Isoniazid activation defects in recombinant Mycobacterium tuberculosis catalase-peroxidase (KatG) mutants evident in InhA inhibitor production.

نویسندگان

  • Chih-Jen Wei
  • Benfang Lei
  • James M Musser
  • Shiao-Chun Tu
چکیده

Mycobacterium tuberculosis KatG catalyzes the activation of the antitubercular agent isoniazid to yield an inhibitor targeting enoyl reductase (InhA). However, no firm biochemical link between many KatG variants and isoniazid resistance has been established. In the present study, six distinct KatG variants identified in clinical Mycobacterium tuberculosis isolates resistant to isoniazid were generated by site-directed mutagenesis, and the recombinant mutant proteins (KatG(A110V), KatG(A139P), KatG(S315N), KatG(L619P), KatG(L634F), and KatG(D735A)) were purified and characterized with respect to their catalase-peroxidase activities (in terms of k(cat)/K(m)), rates of free-radical formation from isoniazid oxidation, and, moreover, abilities to activate isoniazid. The A110V amino acid replacement did not result in significant alteration of KatG activities except that the peroxidase activity was enhanced. The other mutations, however, resulted in modestly reduced catalase and peroxidase catalytic efficiencies and, for the four mutants tested, significantly lower activities to oxidize isoniazid. Compared to the wild-type enzyme, the ability of the KatG(L634F), KatG(A139P), and KatG(D735A) variants to activate isoniazid decreased by 36%, 76%, and 73%, respectively, whereas the KatG(S315N) and KatG(L619P) variants completely lost their abilities to convert isoniazid into the InhA inhibitor. In addition, the inclusion of exogenous Mn(2+) to the isoniazid activation reaction mix significantly improved the ability of wild-type and KatG mutants to produce the InhA inhibitor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Virulence in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from south India

Isoniazid, is the only antituberculous drug for which the relation between lack of virulence and acquisition of resistance was associated. INH-resistant mutants were shown to contain defective katG gene. Classical studies showed that INH-resistant south Indian isolates have lower virulence in guinea pigs and higher susceptibility to H2O2. It is of interest to assess the virulence in south India...

متن کامل

Molecular analysis of isoniazid and rifampin resistance in Mycobacterium tuberculosis isolates recovered from Barcelona.

We studied the presence of mutations in the whole katG gene and specific regions of the oxyR-ahpC and mabA-inhA regulatory region in 61 Mycobacterium tuberculosis isoniazid-resistant isolates. An 81-bp region of the rpoB gene was also sequenced in 17 rifampin-resistant strains. Alterations in the katG gene were detected in 55% of the isolates. Mutation in codon 315 was the most prevalent (32%)....

متن کامل

ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates.

Ethionamide (ETH) is a structural analog of the antituberculosis drug isoniazid (INH). Both of these drugs target InhA, an enzyme involved in mycolic acid biosynthesis. INH requires catalase-peroxidase (KatG) activation, and mutations in katG are a major INH resistance mechanism. Recently an enzyme (EthA) capable of activating ETH has been identified. We sequenced the entire ethA structural gen...

متن کامل

Use of site-directed mutagenesis to probe the structure, function and isoniazid activation of the catalase/peroxidase, KatG, from Mycobacterium tuberculosis.

A series of mutants bearing single amino acid substitutions often encountered in the catalase/peroxidase, KatG, from isoniazid-resistant isolates of Mycobacterium tuberculosis has been produced by site-directed mutagenesis. The resultant enzymes were overexpressed, purified and characterized. Replacing Cys-20 by Ser abolished disulphide-bridge formation, but did not affect either dimerization o...

متن کامل

A slow, tight binding inhibitor of InhA, the enoyl-acyl carrier protein reductase from Mycobacterium tuberculosis.

InhA, the enoyl-ACP reductase in Mycobacterium tuberculosis is an attractive target for the development of novel drugs against tuberculosis, a disease that kills more than two million people each year. InhA is the target of the current first line drug isoniazid for the treatment of tuberculosis infections. Compounds that directly target InhA and do not require activation by the mycobacterial ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 47 2  شماره 

صفحات  -

تاریخ انتشار 2003